Concepte fundamentale ale limbajelor de programare

Fundamentele programarii functionale Curs 12
conf. dr. ing. Ciprian-Bogdan Chirila

Universitatea Politehnica Timisoara
Departamentul de Calculatoare si Tehnologia Informatiei
15 mai 2023

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction

4 Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

Introduction

- Functional programming languages
- Based on computations with functions
- The execution of a pure functional program
- The evaluation of expressions that contain function calls
- Functional programs advantages
- Are wrote fast
- Are more concise
- Are high level
- Good for formal checking
- Can be executed fast on parallel architectures

Referential transparency

- Important characteristic of functional programming
- There are no side effects !!!
- Pure functional language
- Assures the referential transparency
- The semantic of a construction and the value resulted from the evaluation
- depend exclusively only on the semantic of its components

Referential transparency example

- For the expression $(f+g) *(x+y)$ the semantic and thus the value depend only on:
- $f+g$
- $x+y$
- For the subexpression $f+g$ the semantic and thus the value depend only on:
- f and g
- and it is independent of $(x+y)$
- For the subexpression $x+y$ the semantic and thus the value depend only on:
- x and y
- and it is independent of $(f+g)$

Referential transparency

- Allows substitution of expressions with the same semantic
- Thus, we can replace
- $(x+y) * z$ with $x * z+y * z$
- The value of the expression does not depend on evaluation order
- $x * z$ can be replaced with $z * x$

Variables and assignment

- make an expression depend on the history of the program execution
- especially global variables
- side effects
- in imperative languages and non pure functional
- referential transparency is not enabled

Variables and assignment

- example:
- if f and g are functions depending on global variable
- then the very same expression $(f+g) *(x+y)$
- may provide different values on several evaluations
- depending on the global variable

Variables and assignment

- example:
- the expression $(x+y) * f$ will not have the same value with
- $x * f+y * f$
- if f is a function which modifies the value of y

Transparency property

- is very important
- influences the readability of
- programs
- analysis
- automatic formal checking
- it is one of the main property of functional pure languages

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction
(4) Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

Lambda calculus

- developed by mathematician Alonzo Church in the 30's
- Church presents a simple mathematical system that allows formalization of
- programming laguages
- programming in general
- the notation may seem unusual
- it can be viewed as a simple functional language

Lambda calculus (LC)

- from LC we can develop all the other modern programming languages features
- it can be used as a universal code in translating functional languages
- it is simple, but not necessarily an efficient technique
- it can be easily interpreted
- it is a mathematical system to manipulate the so called λ expressions

A λ expression

- a name
- string of characters
- a function
- the application of a function

The function

- λ name.body
- name preceded by λ is called the bound variable of the function
- similar to a formal parameter
- body is a λ expression
- the function has no name

The application of a function

- has the form (expression expression)
- the first expression is a function
- the second expression is the argument
- represents a concretization of the function
- the name specified as a bound variable in the expression will be replaced with the argument

Examples

- identity function
- auto-application function

Identity function

- $\lambda \mathrm{x} . \mathrm{x}$
- bound variable
- first x
- body
- the second x
- ($\lambda \mathrm{x} . \mathrm{x}$ a) results in a
- the argument can be a function itself
- ($\lambda \mathrm{x} . \mathrm{x} \lambda \mathrm{x} . \mathrm{x}$) results in $\lambda \mathrm{x} . \mathrm{x}$

Auto-application function

- $\lambda \mathrm{a} .(\mathrm{a} \mathrm{a})$
- a - is the bound variable
- (a a) - is the body
- passing an argument to this function the effect is that the argument is applied to itself
- If we apply auto-application to the identity function
- ($\lambda \mathrm{a}$. (a a) $\lambda \mathrm{x} . \mathrm{x}$) results $\lambda \mathrm{x} . \mathrm{x}$
- If we apply the auto-application function to itself
- ($\lambda \mathrm{a} .(\mathrm{a} a) \lambda \mathrm{a} .(\mathrm{a} a)$) results in ($\lambda \mathrm{a} .(\mathrm{a} a) \lambda \mathrm{a}$. (a a))
- the auto-application never ends

β reduction

- In order to simplify the writing of λ expressions we will introduce a notation that allows us to associate a name with a function
- def identity $=\lambda \mathrm{x} . \mathrm{x}$
- def auto-application= λ a.(a a)
- (name argument)
- the application of the name to the specified argument
- (name argument) is similar to (function argument)
- where the name was associated with the function

β reduction

- is to replace a bound variable with the argument specified in the application
- as many times as it occurs in the function body
- (function argument) $=>$ expression
- after one β reduction in the application from the left results in the expression from the right
- (function argument) $=>$... => expressions
- the expression is obtained after several β reductions

Examples

Selecting the first argument

- def sel_first= λ first. λ second.first
- first - bound variable
- λ second.first - the body
- ((sel_first arg1)arg2)==
- ((λ first. λ second.first arg1) arg2) =>
- (λ second.arg1 arg2) => arg1
- applied to a pair of arguments arg1 and arg2
- the function returns the first argument arg1
- the second argument arg2 is ignored

Comments

- in order to simplify notation we can skip the parentheses
- when there are no ambiguities
- to apply two arguments to sel_first function can be denoted
- sel_first arg1 arg2
- the notation is of a function with two parameters

Comments

- in λ calculus such functions are expressed through nested functions
- the function λ first. λ second.first applied to a random argument (arg1) result in a function
- λ second.arg1
- that applied to any other second argument returns arg1

Examples

Selecting the second argument

def sel_second= λ first. λ second. second sel_second arg1 arg2 == λ second.second arg2 => arg2

Examples Building a tuple of values

```
def build_tuple arg1 arg2 ==
\lambdafirst.\lambdasecond.\lambdaf.(f first second) arg1 arg2 =>
\lambdasecond.\lambdaf.(f arg1 second) arg2 =>
\lambdaf.(f arg1 arg2)
\lambdaf.(f arg1 arg2) sel_first=>
sel_first arg1 arg2 => ... =>arg1
\lambdaf.(f arg1 arg2) sel_second=>
sel_second arg1 arg2 => ... =>arg2
```


Variables binding. Free and bound variables

- the issues addressed are similar to variables domain from a programming language
- arguments substitution in the body of a function are well accomplished when bound variables in function expressions are named differently
- ($\lambda \mathrm{f} .(\mathrm{f} \lambda \mathrm{x} . \mathrm{x}$) $\lambda \mathrm{a} .(\mathrm{a} \mathrm{a})$)
- the three involved functions in the expression have f, x and a as bound variables
- ($\lambda \mathrm{f} .(\mathrm{f} \lambda \mathrm{x} . \mathrm{x}) ~ \lambda \mathrm{a} .(\mathrm{a} \mathrm{a}))=>$
- ($\lambda \mathrm{a} .(\mathrm{a}$ a) $\lambda \mathrm{x} . \mathrm{x})=>$
- ($\lambda \mathrm{x} . \mathrm{x} \lambda \mathrm{x} . \mathrm{x})=>\lambda \mathrm{x} . \mathrm{x}$

Variables binding. Free and bound variables

- ($\lambda \mathrm{f} .(\mathrm{f} \lambda \mathrm{x} . \mathrm{x}) ~ \lambda \mathrm{a} .(\mathrm{a} \mathrm{a})$)
- expression can be written like:
- ($\lambda \mathrm{f} .(\mathrm{f} \lambda \mathrm{f} . \mathrm{f}$) $\lambda \mathrm{a} .(\mathrm{a} \mathrm{a})$) with the $\lambda \mathrm{f} . \mathrm{f}$ result after the substitution
- for the first substitution the f bound variable is replaced in function $\lambda f .(f \quad \lambda f . f)$ with $\lambda a .(a \quad a)$
- this implies the replacement of the first f from the expression (f $\lambda f . f)$
- it results ($\lambda \mathrm{a} .(\mathrm{a}$ a) $\lambda \mathrm{f} . \mathrm{f}$) which can be further reduced

Variables binding. Free and bound variables

- we do not replace f from the body of the function $\lambda \mathrm{f} . \mathrm{f}$
- in the new function f is a new bound variable
- accidentally they have the same name

The domain of the bound variable of a function

- given the function
- λ name.body
- the domain of the name bound variable is over the function body
- the occurrences of the same name outside the function body does not correspond to the bound variable

Examples

- considering the expression
- ($\lambda \mathrm{f} . \lambda \mathrm{g} \cdot \lambda \mathrm{a}$. (f (g a)) $\lambda \mathrm{g}$. (g g))
- the domain of the f bound variable is expression
- $\lambda \mathrm{g}$. $\lambda \mathrm{a}$. (f (g a))
- the domain of the g bound variable is expression
- $\lambda \mathrm{a}$. (f (g a))
- the domain of the g variable is the expression
- (g g)

Bound variable definition

- the occurrence of a variable v in an expression E is bound if it is present in an subexpression of E which has the form $\lambda \mathrm{v}$. E1
- v appears in the body of a function with a bound to the variable called V
- otherwise the occurrence of v is a free variable

More examples

- $\mathrm{v}(\mathrm{a}$ b v)
- v is free
- $\lambda \mathrm{v} . \mathrm{v}$ (x y v)
- v is bound
- $v(\lambda v .(y \mathrm{v}) \mathrm{y})$
- v is free in the first occurrence
- v is bound in the second occurrence

Variable domain definition

- given the function
- λ name.body
- the domain of the bound variable name extends over the body sequences in which the occurrence of name is free

Example

- given the expression
- $\lambda \mathrm{g}$. (g $\lambda \mathrm{h} .(\mathrm{h}(\mathrm{g} \lambda \mathrm{h} .(\mathrm{h} \lambda \mathrm{g} .(\mathrm{h} \mathrm{g})) \mathrm{)}) \mathrm{g})$
- we establish the domain of g by analyzing the function body (g $\lambda \mathrm{h} .(\mathrm{h}(\mathrm{g} \lambda \mathrm{h} .(\mathrm{h} \lambda \mathrm{g} .(\mathrm{h} \mathrm{g}))) \mathrm{g})$
- the appearances of g outside the red marked zone are free

β reduction definition

- given the application (λ name.body argument)
- we replace all the free occurrences of name from the body with argument

Initial example revisited

- ($\lambda \mathrm{f} .(\mathrm{f} \lambda \mathrm{f} . \mathrm{f}) \lambda \mathrm{a} .(\mathrm{a} \mathrm{a}))$
- the applied function is
- $\lambda \mathrm{f}$. (f $\lambda \mathrm{f} . \mathrm{f})$
- its body is
- (f $\lambda \mathrm{f} . \mathrm{f}$)
- the first and only the first occurrence of f is free and it will be replaced with the argument specified in the application
- ($\lambda \mathrm{a} .(\mathrm{a}$ a) $\lambda \mathrm{f} . \mathrm{f})=>(\lambda \mathrm{f} . \mathrm{f} \lambda \mathrm{f} . \mathrm{f})=>\lambda_{\mathrm{f} . f}$

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables

(3) Beta reduction

(4) Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

β reduction strong definition

- given an application (入name.body argument)
- we replace all occurences of name from the body with the argument
- e.g. ($\lambda \mathrm{f} .(\mathrm{f} \lambda \mathrm{f} . \mathrm{f}$) $\lambda \mathrm{a}$. (a a))
- the applied function is $\lambda \mathrm{f}$. (f $\lambda \mathrm{f} . \mathrm{f}$)
- its body is (f $\lambda \mathrm{f} . \mathrm{f}$)
- ($\lambda \mathrm{a} .(\mathrm{a}$ a) $\lambda \mathrm{f} . \mathrm{f})$
- ($\lambda \mathrm{f} . \mathrm{f} \lambda \mathrm{f} . \mathrm{f})$
- $\lambda \mathrm{f} . \mathrm{f}$

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction
(4) Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

Name conflicts. Alfa conversions

- applying a β reduction, name conflicts may arrise
- e.g.:

```
def f=\lambdax.\lambday.(x y)
f x y == (\lambdax.\lambday.(x y) y z)
=> (\lambday.(y y) z)
=> Z Z
```

the result is errorneous the error may be corrected like:
($\lambda \mathrm{x} . \lambda \mathrm{y} 1 .(\mathrm{x} y 1) \mathrm{y} \mathrm{z}$)
=> ($\lambda \mathrm{y} 1 .(\mathrm{y} y 1) \mathrm{z})$
=> y z

Name conflicts. Alfa conversions

Given a function
λ name1.body
the name of the bound variable name1 and also the free appearances of the name 1 inside the function body may be replaced with a new name, name 2 given the condition that in λ name1.body appears no free variable named name2
The function $\lambda \mathrm{y}$. (x y) was transformed in function $\lambda \mathrm{y} 1 .(\mathrm{x} \mathrm{y} 1)$

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction

4 Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

Mu reduction

- μ reduction is a transformation that (like β reduction) allows the replacement of a λ expression with an equivalent, simpler one
- given the function
λ name. (expression name)
it is equivalent to:
expression
- λ name. (expression name) argument
=> (expression argument)

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction

4 Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

Applied λ calculus

- involves logical values
- involves logical operations
- the C ternary operator condition ? ex1 : ex2
- we model the logical values with the following functions: sel_first, sel_second, build_tuple

Applied λ calculus

```
def cond=\lambdae1.\lambdae2.\lambdac.(c e1 e2)
we apply this function succesively to expressions ex1 and ex2:
cond ex1 ex2 ==
\lambdae1.\lambdae2.\lambdac.(c e1 e2) ex1 ex2=>
\lambdae2.\lambdac.(c ex1 e2) ex2=>
\lambdac.(c ex1 ex2)
```


Applied λ calculus

the true and false values will be represented by the sel_first and sel_second functions
def true $=\lambda p . \lambda s . p$
def false $=\lambda p . \lambda s . s$
resulting:
cond ex1 ex2 true => ... =>
$\lambda c .(c$ ex1 ex2) $\lambda p . \lambda s . p=>$
λ p. $\lambda \mathrm{s} . \mathrm{p}$ ex1 ex2 => ... $\Rightarrow>$ ex1
similarly:
cond ex1 ex2 false => ... =>
$\lambda c .(c$ ex1 ex2) λ p. $\lambda \mathrm{s} . \mathrm{s}=>$
λ p. $\lambda \mathrm{s} . \mathrm{s}$ ex1 ex2 => ... $\Rightarrow>$ ex2

Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction
(4) Name conflicts. Alfa conversions
(5) Mu reduction
(6) Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

The NOT logical operator

```
def not=\lambdax.(cond false true x)
e.g.:
not true == \lambdax. (cond false true x) true =>
cond false true true => ... => false
conversely
not false == \lambdax.(cond false true x) false =>
cond false true false => ... => true
```


The AND logical operator

```
def and=\lambdax.\lambday.(cond y false x)
e.g.:
we compute true AND false
(and true false) ==
\lambdax.\lambday.(cond y false x) true false => ... =>
cond false false true => ... => false
we compute false AND true
(and false true) ==
\lambdax.\lambday.(cond y false x) false true => ... =>
cond true false false => ... => false
```


The AND logical operator

```
we compute NOT false AND true
(and (not false) true) ==
\lambdax.\lambday.(cond y false x) ( }\lambda\textrm{x}.(\mathrm{ (cond false true x)) true => ...
=>
\lambdax.\lambday.(cond y false x) true true => ... => cond true false
true => ... => true
```


The OR logical operator

```
def or= \lambdax.\lambday.(cond true y x)
e.g.:
we compute true OR false
(or true false) ==
\lambdax.\lambday.(cond true y x) true false => ... =>
cond true false true => ... => true
```


Cuprins

(1) Introduction

- Referential transparency
- Variables and assignment
(2) Lambda calculus
- Lambda calculus and functions
- Beta reduction
- Variable binding. Free variables and bound variables
(3) Beta reduction

4 Name conflicts. Alfa conversions
(5) Mu reduction

6 Boolean values and conditional expressions
(7) Logical operators: NOT, AND, OR
(8) Bibliography

Bibliography

(1) Horia Ciocarlie - The programming language universe, second edition, Timisoara, 2013.
(2) Carlo Ghezzi, Mehdi Jarayeri - Programming Languages, John Wiley, 1987.
(3) Ellis Horrowitz - Fundamentals of programming languages, Computer Science Press, 1984.
(9) Donald Knuth - The art of computer programming, 2002.

